Acta Crystallographica Section C

Crystal Structure

Communications

ISSN 0108-2701

cis-Verbenol

James K. Harper, Atta M. Arif and David M. Grant*

Department of Chemistry, University of Utah, Salt Lake City, UT 84112, USA
Correspondence e-mail: grant@chemistry.utah.edu

Received 9 June 1999
Accepted 6 December 1999
cis-Verbenol (alternative name: 4,6,6-trimethylbicyclo[3.1.1]-hept-3-en-2-ol), $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}$, forms an orthorhombic $P 2_{1} 2_{1} 2_{1}$ crystal that contains three molecules per asymmetric unit. These three molecules form hydrogen-bonded helices parallel to the shortest axis of the lattice. The $\mathrm{O} \cdots \mathrm{O}$ distances associated with the hydrogen bonds are 2.760 (3), 2.760 (3) and 2.766 (3) \AA.

Comment

Verbenol is a monoterpene alcohol with four known stereoisomers (Dictionary of Natural Products, 1994). Two enantiomers, $(1 R, 2 S, 5 R)$ and $(1 S, 2 R, 5 S)$, are oils and are diastereoisomers of the solid enantiomeric structures, $(1 R, 2 R, 5 R)$ and $(1 S, 2 S, 5 S)$, studied here. The numbering and R / S notation used in the text refers to the 'chemical' numbering scheme. Recent solid-state NMR studies have demonstrated that verbenol exhibits multiple resonances per carbon position in the molecular structure, suggesting polymorphism or multiple molecules per asymmetric unit (Harper \& Grant, 2000). An X-ray analysis was performed on (I) to clarify these structural variations and to characterize the associated hydrogen-bonding features.

(I)

The arrangement of the three molecules of the asymmetric unit for (I) is shown in Fig. 1. The crystal of (I) consists of helical hydrogen-bonded chains lying parallel to the shortest axis. The three distinct molecules per asymmetric unit differ primarily in the conformations of the hydrogen-bonded region of verbenol, with $\mathrm{C} 3-\mathrm{C} 4-\mathrm{O}-\mathrm{H}$ dihedral angles of 55,69 and 74°. All other differences in heavy-atom angles, both dihedral and geminal, and in bond lengths were modest between the three unique verbenol molecules, with respective variations of less than 2° and $0.013 \AA$. Four asymmetric units compose the unit-cell arrangement shown in Fig. 2.

Monofunctional alcohols frequently form chains, rings and helices. Such arrangements often contain more than one molecule per asymmetric unit (Brock \& Duncan, 1994). The

Figure 1
The arrangement of the three cis-verbenol molecules in the asymmetric unit of (I) showing the relative configuration. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as spheres of arbitrary radii. The 'crystallographic' numbering differs from the 'chemical' numbering and the chemical ($1 S, 2 S, 5 S / 1 R, 2 R, 5 R$) notation would be $(1 R, 4 R, 5 R / 1 S, 4 S, 5 S)$ in the crystallographic numbering scheme shown here.
present X-ray structure of verbenol corresponds to a previously described sterol monoalcohol structure (Brock et al., 1994) in the number of molecules per asymmetric unit, general hydrogen-bonding arrangement and space group. Similar hydrogen-bonded helices containing three molecules per asymmetric unit have also been observed in other monoalcohols (Singelenberg \& van Eijck, 1987; Zavodnik et

Figure 2
The arrangement of verbenol in the unit cell of (I) viewed along the a axis. Extension of the helical structure illustrates the propagation of the coil beyond a given asymmetric unit.
al., 1987; Escobar \& Wittke, 1984), although with different space groups. Solid-state NMR analyses demonstrate that other preparations of solid verbenol powder samples contain a second minor polymorph with four molecules per asymmetric unit (Harper \& Grant, 2000). A single crystal of this second structure could not be isolated and hence has not been subjected to X-ray analysis.

Experimental

Verbenol was obtained from Aldrich as a $50+\%$ enantiomeric excess $(1 S, 2 S, 5 S / 1 R, 2 R, 5 R)$ mixture and used as received. Reported enantiomeric excess was determined by Aldrich using chiral stationary phase gas chromatography. A $0.6 / 0.4$ (s.u. 0.1) $(1 S, 2 S, 5 S / 1 R, 2 R, 5 R)$ enantiomeric ratio was determined in our lab by polarimetry on a sample dissolved in acetone. The enantiomeric content is a measure of the bulk material and a corresponding value for the individual crystal could not be determined with the methods used. A verbenol purity of 94% was found by gas chromatography on an achiral stationary phase. The enantiomeric $(1 S, 2 S, 5 S / 1 R, 2 R, 5 R)$ mixture of (I) spontaneously resolved during crystallization by slow evaporation of a solution in 100% methanol and suitable crystals of one of the enantiomers of (I) (m.p. 341.5-346.5 K) were obtained.

Crystal data

$\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}$
$M_{r}=152.23$
Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
$a=7.0115$ (1) \AA
$b=18.7691$ (6) \AA
$c=21.1681$ (7) \AA
$V=2785.71(13) \AA^{3}$
$Z=12$
$D_{x}=1.089 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 252 reflections
$\theta=4.10-24.97^{\circ}$
$\mu=0.068 \mathrm{~mm}^{-1}$
$T=200$ (1) K
Prism, colorless
$0.20 \times 0.14 \times 0.13 \mathrm{~mm}$

Data collection

Nonius KappaCCD diffractometer φ and ω scans
13724 measured reflections
2717 independent reflections
2360 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.042$
$\theta_{\text {max }}=24.79^{\circ}$
$h=-8 \rightarrow 7$
$k=-22 \rightarrow 22$
$l=-24 \rightarrow 24$
Intensity decay: <2\%

Refinement

Refinement on F^{2}
$R(F)=0.047$
$w R\left(F^{2}\right)=0.127$
$S=1.05$
2717 reflections
310 parameters
H atoms treated by a mixture of independent and constrained refinement

$$
\begin{aligned}
& \begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0812 P)^{2}\right. \\
&+0.6806 P] \\
& \quad \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.24 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.23 \mathrm{e} \AA^{-3}
\end{aligned}
\end{aligned}
$$

Table 1
Selected geometric parameters ($\mathrm{A},{ }^{\circ}$).

$\mathrm{O} 1-\mathrm{C} 4$	$1.444(3)$	$\mathrm{O} 1^{\prime \prime}-\mathrm{C} 4^{\prime \prime}$	$1.443(4)$
$\mathrm{O} 1^{\prime}-\mathrm{C} 4^{\prime}$	$1.443(4)$		
$\mathrm{O} 1-\mathrm{C} 4-\mathrm{C} 3$	$111.5(3)$	$\mathrm{O} 1^{\prime \prime}-\mathrm{C}^{\prime \prime}-\mathrm{C}^{\prime \prime}$	$111.0(3)$
$\mathrm{O}^{\prime}-\mathrm{C} 4^{\prime}-\mathrm{C} 3^{\prime}$	$111.7(3)$		

Table 2
Hydrogen-bonding geometry ($\left(\AA^{\circ}{ }^{\circ}\right.$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1-\mathrm{HO} 1 \cdots \mathrm{O}^{\prime}$	0.81 (4)	1.97 (4)	2.760 (3)	162 (4)
$\mathrm{O} 1^{\prime}-\mathrm{HO}^{\prime} \cdots{ }^{\prime} \cdot \mathrm{O}^{\prime \prime}$	0.70 (4)	2.11 (5)	2.760 (3)	156 (5)
$\mathrm{O} 1^{\prime \prime}-\mathrm{HO1}^{\prime \prime} \ldots \mathrm{Ol}^{\text {i }}$	0.75 (5)	2.02 (5)	2.766 (3)	170 (4)

Symmetry code: (i) $x-1, y, z$.

Hydroxy H atoms were located and refined isotropically. All other H atoms were refined as riding models on the appropriate C atoms using SHELXL97 (Sheldrick, 1997) restraints and assigned isotropic displacement parameters of 1.5 for methyl and 1.2 for all other H atoms. The lack of suitable anomalous scatterers did not allow us to determine the absolute configuration of the enantiomer studied and we report here the relative configuration of cis-verbenol.

Data collection: COLLECT (Nonius, 1998); cell refinement: DENZO-SMN (Otwinowski \& Minor, 1997); data reduction: DENZO-SMN; program(s) used to solve structure: SIR97 (Altomare et al., 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: WinGX (Farrugia, 1998) and ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: ORTEP-3 for Windows.

This work was supported by the National Institutes of Health of the Department of Health and Human Services under grant GM08521-38.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: BK1491). Services for accessing these data are described at the back of the journal.

References

Altomare, A., Cascarano, C., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Burla, M. C., Polidori, G., Camalli, M. \& Spagna, R. (1997). SIR97. University of Bari, Italy.
Brock, C. P. \& Duncan, L. L. (1994). Chem. Mater. 6, 1307-1312.
Brock, C. P., Stoilov, I. \& Watt, D. S. (1994). Acta Cryst. C50, 434-438.
Dictionary of Natural Products (1994). Edited by J. Buckingham, Vol. 4, p. 4686. London: Chapman and Hall.

Escobar, C. \& Wittke, O. (1984). Acta Cryst. C40, 1469-1471.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1998). WinGX. University of Glasgow, Scotland.
Harper, J. K. \& Grant, D. M. (2000). J. Am. Chem. Soc. In the press. Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands. Otwinowski, Z. \& Minor, W. (1997). Methods Enzymol. 276, 307-326. Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany. Singelenberg, F. A. J. \& van Eijck, B. P. (1987). Acta Cryst. C43, 693-695.
Zavodnik, V. E., Bel'skii, V. K. \& Zorkii, P. M. (1987). Zh. Strukt. Khim. 28, 175-177.

